Highest Common Factor of 617, 957, 948, 801 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 617, 957, 948, 801 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 617, 957, 948, 801 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 617, 957, 948, 801 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 617, 957, 948, 801 is 1.

HCF(617, 957, 948, 801) = 1

HCF of 617, 957, 948, 801 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 617, 957, 948, 801 is 1.

Highest Common Factor of 617,957,948,801 using Euclid's algorithm

Highest Common Factor of 617,957,948,801 is 1

Step 1: Since 957 > 617, we apply the division lemma to 957 and 617, to get

957 = 617 x 1 + 340

Step 2: Since the reminder 617 ≠ 0, we apply division lemma to 340 and 617, to get

617 = 340 x 1 + 277

Step 3: We consider the new divisor 340 and the new remainder 277, and apply the division lemma to get

340 = 277 x 1 + 63

We consider the new divisor 277 and the new remainder 63,and apply the division lemma to get

277 = 63 x 4 + 25

We consider the new divisor 63 and the new remainder 25,and apply the division lemma to get

63 = 25 x 2 + 13

We consider the new divisor 25 and the new remainder 13,and apply the division lemma to get

25 = 13 x 1 + 12

We consider the new divisor 13 and the new remainder 12,and apply the division lemma to get

13 = 12 x 1 + 1

We consider the new divisor 12 and the new remainder 1,and apply the division lemma to get

12 = 1 x 12 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 617 and 957 is 1

Notice that 1 = HCF(12,1) = HCF(13,12) = HCF(25,13) = HCF(63,25) = HCF(277,63) = HCF(340,277) = HCF(617,340) = HCF(957,617) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 948 > 1, we apply the division lemma to 948 and 1, to get

948 = 1 x 948 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 948 is 1

Notice that 1 = HCF(948,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 801 > 1, we apply the division lemma to 801 and 1, to get

801 = 1 x 801 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 801 is 1

Notice that 1 = HCF(801,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 617, 957, 948, 801 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 617, 957, 948, 801?

Answer: HCF of 617, 957, 948, 801 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 617, 957, 948, 801 using Euclid's Algorithm?

Answer: For arbitrary numbers 617, 957, 948, 801 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.