Highest Common Factor of 617, 993, 139 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 617, 993, 139 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 617, 993, 139 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 617, 993, 139 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 617, 993, 139 is 1.

HCF(617, 993, 139) = 1

HCF of 617, 993, 139 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 617, 993, 139 is 1.

Highest Common Factor of 617,993,139 using Euclid's algorithm

Highest Common Factor of 617,993,139 is 1

Step 1: Since 993 > 617, we apply the division lemma to 993 and 617, to get

993 = 617 x 1 + 376

Step 2: Since the reminder 617 ≠ 0, we apply division lemma to 376 and 617, to get

617 = 376 x 1 + 241

Step 3: We consider the new divisor 376 and the new remainder 241, and apply the division lemma to get

376 = 241 x 1 + 135

We consider the new divisor 241 and the new remainder 135,and apply the division lemma to get

241 = 135 x 1 + 106

We consider the new divisor 135 and the new remainder 106,and apply the division lemma to get

135 = 106 x 1 + 29

We consider the new divisor 106 and the new remainder 29,and apply the division lemma to get

106 = 29 x 3 + 19

We consider the new divisor 29 and the new remainder 19,and apply the division lemma to get

29 = 19 x 1 + 10

We consider the new divisor 19 and the new remainder 10,and apply the division lemma to get

19 = 10 x 1 + 9

We consider the new divisor 10 and the new remainder 9,and apply the division lemma to get

10 = 9 x 1 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 617 and 993 is 1

Notice that 1 = HCF(9,1) = HCF(10,9) = HCF(19,10) = HCF(29,19) = HCF(106,29) = HCF(135,106) = HCF(241,135) = HCF(376,241) = HCF(617,376) = HCF(993,617) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 139 > 1, we apply the division lemma to 139 and 1, to get

139 = 1 x 139 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 139 is 1

Notice that 1 = HCF(139,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 617, 993, 139 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 617, 993, 139?

Answer: HCF of 617, 993, 139 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 617, 993, 139 using Euclid's Algorithm?

Answer: For arbitrary numbers 617, 993, 139 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.