Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6184, 5226 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 6184, 5226 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 6184, 5226 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 6184, 5226 is 2.
HCF(6184, 5226) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 6184, 5226 is 2.
Step 1: Since 6184 > 5226, we apply the division lemma to 6184 and 5226, to get
6184 = 5226 x 1 + 958
Step 2: Since the reminder 5226 ≠ 0, we apply division lemma to 958 and 5226, to get
5226 = 958 x 5 + 436
Step 3: We consider the new divisor 958 and the new remainder 436, and apply the division lemma to get
958 = 436 x 2 + 86
We consider the new divisor 436 and the new remainder 86,and apply the division lemma to get
436 = 86 x 5 + 6
We consider the new divisor 86 and the new remainder 6,and apply the division lemma to get
86 = 6 x 14 + 2
We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get
6 = 2 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 6184 and 5226 is 2
Notice that 2 = HCF(6,2) = HCF(86,6) = HCF(436,86) = HCF(958,436) = HCF(5226,958) = HCF(6184,5226) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 6184, 5226?
Answer: HCF of 6184, 5226 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 6184, 5226 using Euclid's Algorithm?
Answer: For arbitrary numbers 6184, 5226 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.