Highest Common Factor of 620, 527, 612, 854 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 620, 527, 612, 854 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 620, 527, 612, 854 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 620, 527, 612, 854 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 620, 527, 612, 854 is 1.

HCF(620, 527, 612, 854) = 1

HCF of 620, 527, 612, 854 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 620, 527, 612, 854 is 1.

Highest Common Factor of 620,527,612,854 using Euclid's algorithm

Highest Common Factor of 620,527,612,854 is 1

Step 1: Since 620 > 527, we apply the division lemma to 620 and 527, to get

620 = 527 x 1 + 93

Step 2: Since the reminder 527 ≠ 0, we apply division lemma to 93 and 527, to get

527 = 93 x 5 + 62

Step 3: We consider the new divisor 93 and the new remainder 62, and apply the division lemma to get

93 = 62 x 1 + 31

We consider the new divisor 62 and the new remainder 31, and apply the division lemma to get

62 = 31 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 31, the HCF of 620 and 527 is 31

Notice that 31 = HCF(62,31) = HCF(93,62) = HCF(527,93) = HCF(620,527) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 612 > 31, we apply the division lemma to 612 and 31, to get

612 = 31 x 19 + 23

Step 2: Since the reminder 31 ≠ 0, we apply division lemma to 23 and 31, to get

31 = 23 x 1 + 8

Step 3: We consider the new divisor 23 and the new remainder 8, and apply the division lemma to get

23 = 8 x 2 + 7

We consider the new divisor 8 and the new remainder 7,and apply the division lemma to get

8 = 7 x 1 + 1

We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get

7 = 1 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 31 and 612 is 1

Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(23,8) = HCF(31,23) = HCF(612,31) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 854 > 1, we apply the division lemma to 854 and 1, to get

854 = 1 x 854 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 854 is 1

Notice that 1 = HCF(854,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 620, 527, 612, 854 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 620, 527, 612, 854?

Answer: HCF of 620, 527, 612, 854 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 620, 527, 612, 854 using Euclid's Algorithm?

Answer: For arbitrary numbers 620, 527, 612, 854 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.