Highest Common Factor of 620, 840, 500 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 620, 840, 500 i.e. 20 the largest integer that leaves a remainder zero for all numbers.

HCF of 620, 840, 500 is 20 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 620, 840, 500 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 620, 840, 500 is 20.

HCF(620, 840, 500) = 20

HCF of 620, 840, 500 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 620, 840, 500 is 20.

Highest Common Factor of 620,840,500 using Euclid's algorithm

Highest Common Factor of 620,840,500 is 20

Step 1: Since 840 > 620, we apply the division lemma to 840 and 620, to get

840 = 620 x 1 + 220

Step 2: Since the reminder 620 ≠ 0, we apply division lemma to 220 and 620, to get

620 = 220 x 2 + 180

Step 3: We consider the new divisor 220 and the new remainder 180, and apply the division lemma to get

220 = 180 x 1 + 40

We consider the new divisor 180 and the new remainder 40,and apply the division lemma to get

180 = 40 x 4 + 20

We consider the new divisor 40 and the new remainder 20,and apply the division lemma to get

40 = 20 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 20, the HCF of 620 and 840 is 20

Notice that 20 = HCF(40,20) = HCF(180,40) = HCF(220,180) = HCF(620,220) = HCF(840,620) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 500 > 20, we apply the division lemma to 500 and 20, to get

500 = 20 x 25 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 20, the HCF of 20 and 500 is 20

Notice that 20 = HCF(500,20) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 620, 840, 500 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 620, 840, 500?

Answer: HCF of 620, 840, 500 is 20 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 620, 840, 500 using Euclid's Algorithm?

Answer: For arbitrary numbers 620, 840, 500 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.