Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 620, 985, 728 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 620, 985, 728 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 620, 985, 728 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 620, 985, 728 is 1.
HCF(620, 985, 728) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 620, 985, 728 is 1.
Step 1: Since 985 > 620, we apply the division lemma to 985 and 620, to get
985 = 620 x 1 + 365
Step 2: Since the reminder 620 ≠ 0, we apply division lemma to 365 and 620, to get
620 = 365 x 1 + 255
Step 3: We consider the new divisor 365 and the new remainder 255, and apply the division lemma to get
365 = 255 x 1 + 110
We consider the new divisor 255 and the new remainder 110,and apply the division lemma to get
255 = 110 x 2 + 35
We consider the new divisor 110 and the new remainder 35,and apply the division lemma to get
110 = 35 x 3 + 5
We consider the new divisor 35 and the new remainder 5,and apply the division lemma to get
35 = 5 x 7 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 620 and 985 is 5
Notice that 5 = HCF(35,5) = HCF(110,35) = HCF(255,110) = HCF(365,255) = HCF(620,365) = HCF(985,620) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 728 > 5, we apply the division lemma to 728 and 5, to get
728 = 5 x 145 + 3
Step 2: Since the reminder 5 ≠ 0, we apply division lemma to 3 and 5, to get
5 = 3 x 1 + 2
Step 3: We consider the new divisor 3 and the new remainder 2, and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1, and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 5 and 728 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(728,5) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 620, 985, 728?
Answer: HCF of 620, 985, 728 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 620, 985, 728 using Euclid's Algorithm?
Answer: For arbitrary numbers 620, 985, 728 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.