Highest Common Factor of 6208, 3461 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6208, 3461 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6208, 3461 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6208, 3461 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6208, 3461 is 1.

HCF(6208, 3461) = 1

HCF of 6208, 3461 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6208, 3461 is 1.

Highest Common Factor of 6208,3461 using Euclid's algorithm

Highest Common Factor of 6208,3461 is 1

Step 1: Since 6208 > 3461, we apply the division lemma to 6208 and 3461, to get

6208 = 3461 x 1 + 2747

Step 2: Since the reminder 3461 ≠ 0, we apply division lemma to 2747 and 3461, to get

3461 = 2747 x 1 + 714

Step 3: We consider the new divisor 2747 and the new remainder 714, and apply the division lemma to get

2747 = 714 x 3 + 605

We consider the new divisor 714 and the new remainder 605,and apply the division lemma to get

714 = 605 x 1 + 109

We consider the new divisor 605 and the new remainder 109,and apply the division lemma to get

605 = 109 x 5 + 60

We consider the new divisor 109 and the new remainder 60,and apply the division lemma to get

109 = 60 x 1 + 49

We consider the new divisor 60 and the new remainder 49,and apply the division lemma to get

60 = 49 x 1 + 11

We consider the new divisor 49 and the new remainder 11,and apply the division lemma to get

49 = 11 x 4 + 5

We consider the new divisor 11 and the new remainder 5,and apply the division lemma to get

11 = 5 x 2 + 1

We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get

5 = 1 x 5 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6208 and 3461 is 1

Notice that 1 = HCF(5,1) = HCF(11,5) = HCF(49,11) = HCF(60,49) = HCF(109,60) = HCF(605,109) = HCF(714,605) = HCF(2747,714) = HCF(3461,2747) = HCF(6208,3461) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6208, 3461 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6208, 3461?

Answer: HCF of 6208, 3461 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6208, 3461 using Euclid's Algorithm?

Answer: For arbitrary numbers 6208, 3461 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.