Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 621, 207, 937 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 621, 207, 937 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 621, 207, 937 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 621, 207, 937 is 1.
HCF(621, 207, 937) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 621, 207, 937 is 1.
Step 1: Since 621 > 207, we apply the division lemma to 621 and 207, to get
621 = 207 x 3 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 207, the HCF of 621 and 207 is 207
Notice that 207 = HCF(621,207) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 937 > 207, we apply the division lemma to 937 and 207, to get
937 = 207 x 4 + 109
Step 2: Since the reminder 207 ≠ 0, we apply division lemma to 109 and 207, to get
207 = 109 x 1 + 98
Step 3: We consider the new divisor 109 and the new remainder 98, and apply the division lemma to get
109 = 98 x 1 + 11
We consider the new divisor 98 and the new remainder 11,and apply the division lemma to get
98 = 11 x 8 + 10
We consider the new divisor 11 and the new remainder 10,and apply the division lemma to get
11 = 10 x 1 + 1
We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get
10 = 1 x 10 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 207 and 937 is 1
Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(98,11) = HCF(109,98) = HCF(207,109) = HCF(937,207) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 621, 207, 937?
Answer: HCF of 621, 207, 937 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 621, 207, 937 using Euclid's Algorithm?
Answer: For arbitrary numbers 621, 207, 937 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.