Highest Common Factor of 622, 1758 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 622, 1758 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 622, 1758 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 622, 1758 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 622, 1758 is 2.

HCF(622, 1758) = 2

HCF of 622, 1758 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 622, 1758 is 2.

Highest Common Factor of 622,1758 using Euclid's algorithm

Highest Common Factor of 622,1758 is 2

Step 1: Since 1758 > 622, we apply the division lemma to 1758 and 622, to get

1758 = 622 x 2 + 514

Step 2: Since the reminder 622 ≠ 0, we apply division lemma to 514 and 622, to get

622 = 514 x 1 + 108

Step 3: We consider the new divisor 514 and the new remainder 108, and apply the division lemma to get

514 = 108 x 4 + 82

We consider the new divisor 108 and the new remainder 82,and apply the division lemma to get

108 = 82 x 1 + 26

We consider the new divisor 82 and the new remainder 26,and apply the division lemma to get

82 = 26 x 3 + 4

We consider the new divisor 26 and the new remainder 4,and apply the division lemma to get

26 = 4 x 6 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 622 and 1758 is 2

Notice that 2 = HCF(4,2) = HCF(26,4) = HCF(82,26) = HCF(108,82) = HCF(514,108) = HCF(622,514) = HCF(1758,622) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 622, 1758 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 622, 1758?

Answer: HCF of 622, 1758 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 622, 1758 using Euclid's Algorithm?

Answer: For arbitrary numbers 622, 1758 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.