Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6235, 8199 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 6235, 8199 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 6235, 8199 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 6235, 8199 is 1.
HCF(6235, 8199) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 6235, 8199 is 1.
Step 1: Since 8199 > 6235, we apply the division lemma to 8199 and 6235, to get
8199 = 6235 x 1 + 1964
Step 2: Since the reminder 6235 ≠ 0, we apply division lemma to 1964 and 6235, to get
6235 = 1964 x 3 + 343
Step 3: We consider the new divisor 1964 and the new remainder 343, and apply the division lemma to get
1964 = 343 x 5 + 249
We consider the new divisor 343 and the new remainder 249,and apply the division lemma to get
343 = 249 x 1 + 94
We consider the new divisor 249 and the new remainder 94,and apply the division lemma to get
249 = 94 x 2 + 61
We consider the new divisor 94 and the new remainder 61,and apply the division lemma to get
94 = 61 x 1 + 33
We consider the new divisor 61 and the new remainder 33,and apply the division lemma to get
61 = 33 x 1 + 28
We consider the new divisor 33 and the new remainder 28,and apply the division lemma to get
33 = 28 x 1 + 5
We consider the new divisor 28 and the new remainder 5,and apply the division lemma to get
28 = 5 x 5 + 3
We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get
5 = 3 x 1 + 2
We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get
3 = 2 x 1 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6235 and 8199 is 1
Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(28,5) = HCF(33,28) = HCF(61,33) = HCF(94,61) = HCF(249,94) = HCF(343,249) = HCF(1964,343) = HCF(6235,1964) = HCF(8199,6235) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 6235, 8199?
Answer: HCF of 6235, 8199 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 6235, 8199 using Euclid's Algorithm?
Answer: For arbitrary numbers 6235, 8199 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.