Highest Common Factor of 6238, 9404, 74663 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6238, 9404, 74663 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6238, 9404, 74663 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6238, 9404, 74663 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6238, 9404, 74663 is 1.

HCF(6238, 9404, 74663) = 1

HCF of 6238, 9404, 74663 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6238, 9404, 74663 is 1.

Highest Common Factor of 6238,9404,74663 using Euclid's algorithm

Highest Common Factor of 6238,9404,74663 is 1

Step 1: Since 9404 > 6238, we apply the division lemma to 9404 and 6238, to get

9404 = 6238 x 1 + 3166

Step 2: Since the reminder 6238 ≠ 0, we apply division lemma to 3166 and 6238, to get

6238 = 3166 x 1 + 3072

Step 3: We consider the new divisor 3166 and the new remainder 3072, and apply the division lemma to get

3166 = 3072 x 1 + 94

We consider the new divisor 3072 and the new remainder 94,and apply the division lemma to get

3072 = 94 x 32 + 64

We consider the new divisor 94 and the new remainder 64,and apply the division lemma to get

94 = 64 x 1 + 30

We consider the new divisor 64 and the new remainder 30,and apply the division lemma to get

64 = 30 x 2 + 4

We consider the new divisor 30 and the new remainder 4,and apply the division lemma to get

30 = 4 x 7 + 2

We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get

4 = 2 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 6238 and 9404 is 2

Notice that 2 = HCF(4,2) = HCF(30,4) = HCF(64,30) = HCF(94,64) = HCF(3072,94) = HCF(3166,3072) = HCF(6238,3166) = HCF(9404,6238) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 74663 > 2, we apply the division lemma to 74663 and 2, to get

74663 = 2 x 37331 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 74663 is 1

Notice that 1 = HCF(2,1) = HCF(74663,2) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 6238, 9404, 74663 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6238, 9404, 74663?

Answer: HCF of 6238, 9404, 74663 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6238, 9404, 74663 using Euclid's Algorithm?

Answer: For arbitrary numbers 6238, 9404, 74663 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.