Highest Common Factor of 626, 978 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 626, 978 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 626, 978 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 626, 978 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 626, 978 is 2.

HCF(626, 978) = 2

HCF of 626, 978 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 626, 978 is 2.

Highest Common Factor of 626,978 using Euclid's algorithm

Highest Common Factor of 626,978 is 2

Step 1: Since 978 > 626, we apply the division lemma to 978 and 626, to get

978 = 626 x 1 + 352

Step 2: Since the reminder 626 ≠ 0, we apply division lemma to 352 and 626, to get

626 = 352 x 1 + 274

Step 3: We consider the new divisor 352 and the new remainder 274, and apply the division lemma to get

352 = 274 x 1 + 78

We consider the new divisor 274 and the new remainder 78,and apply the division lemma to get

274 = 78 x 3 + 40

We consider the new divisor 78 and the new remainder 40,and apply the division lemma to get

78 = 40 x 1 + 38

We consider the new divisor 40 and the new remainder 38,and apply the division lemma to get

40 = 38 x 1 + 2

We consider the new divisor 38 and the new remainder 2,and apply the division lemma to get

38 = 2 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 626 and 978 is 2

Notice that 2 = HCF(38,2) = HCF(40,38) = HCF(78,40) = HCF(274,78) = HCF(352,274) = HCF(626,352) = HCF(978,626) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 626, 978 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 626, 978?

Answer: HCF of 626, 978 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 626, 978 using Euclid's Algorithm?

Answer: For arbitrary numbers 626, 978 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.