Highest Common Factor of 629, 862, 499 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 629, 862, 499 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 629, 862, 499 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 629, 862, 499 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 629, 862, 499 is 1.

HCF(629, 862, 499) = 1

HCF of 629, 862, 499 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 629, 862, 499 is 1.

Highest Common Factor of 629,862,499 using Euclid's algorithm

Highest Common Factor of 629,862,499 is 1

Step 1: Since 862 > 629, we apply the division lemma to 862 and 629, to get

862 = 629 x 1 + 233

Step 2: Since the reminder 629 ≠ 0, we apply division lemma to 233 and 629, to get

629 = 233 x 2 + 163

Step 3: We consider the new divisor 233 and the new remainder 163, and apply the division lemma to get

233 = 163 x 1 + 70

We consider the new divisor 163 and the new remainder 70,and apply the division lemma to get

163 = 70 x 2 + 23

We consider the new divisor 70 and the new remainder 23,and apply the division lemma to get

70 = 23 x 3 + 1

We consider the new divisor 23 and the new remainder 1,and apply the division lemma to get

23 = 1 x 23 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 629 and 862 is 1

Notice that 1 = HCF(23,1) = HCF(70,23) = HCF(163,70) = HCF(233,163) = HCF(629,233) = HCF(862,629) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 499 > 1, we apply the division lemma to 499 and 1, to get

499 = 1 x 499 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 499 is 1

Notice that 1 = HCF(499,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 629, 862, 499 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 629, 862, 499?

Answer: HCF of 629, 862, 499 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 629, 862, 499 using Euclid's Algorithm?

Answer: For arbitrary numbers 629, 862, 499 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.