Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 629, 969 i.e. 17 the largest integer that leaves a remainder zero for all numbers.
HCF of 629, 969 is 17 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 629, 969 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 629, 969 is 17.
HCF(629, 969) = 17
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 629, 969 is 17.
Step 1: Since 969 > 629, we apply the division lemma to 969 and 629, to get
969 = 629 x 1 + 340
Step 2: Since the reminder 629 ≠ 0, we apply division lemma to 340 and 629, to get
629 = 340 x 1 + 289
Step 3: We consider the new divisor 340 and the new remainder 289, and apply the division lemma to get
340 = 289 x 1 + 51
We consider the new divisor 289 and the new remainder 51,and apply the division lemma to get
289 = 51 x 5 + 34
We consider the new divisor 51 and the new remainder 34,and apply the division lemma to get
51 = 34 x 1 + 17
We consider the new divisor 34 and the new remainder 17,and apply the division lemma to get
34 = 17 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 17, the HCF of 629 and 969 is 17
Notice that 17 = HCF(34,17) = HCF(51,34) = HCF(289,51) = HCF(340,289) = HCF(629,340) = HCF(969,629) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 629, 969?
Answer: HCF of 629, 969 is 17 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 629, 969 using Euclid's Algorithm?
Answer: For arbitrary numbers 629, 969 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.