Highest Common Factor of 632, 404, 133, 983 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 632, 404, 133, 983 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 632, 404, 133, 983 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 632, 404, 133, 983 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 632, 404, 133, 983 is 1.

HCF(632, 404, 133, 983) = 1

HCF of 632, 404, 133, 983 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 632, 404, 133, 983 is 1.

Highest Common Factor of 632,404,133,983 using Euclid's algorithm

Highest Common Factor of 632,404,133,983 is 1

Step 1: Since 632 > 404, we apply the division lemma to 632 and 404, to get

632 = 404 x 1 + 228

Step 2: Since the reminder 404 ≠ 0, we apply division lemma to 228 and 404, to get

404 = 228 x 1 + 176

Step 3: We consider the new divisor 228 and the new remainder 176, and apply the division lemma to get

228 = 176 x 1 + 52

We consider the new divisor 176 and the new remainder 52,and apply the division lemma to get

176 = 52 x 3 + 20

We consider the new divisor 52 and the new remainder 20,and apply the division lemma to get

52 = 20 x 2 + 12

We consider the new divisor 20 and the new remainder 12,and apply the division lemma to get

20 = 12 x 1 + 8

We consider the new divisor 12 and the new remainder 8,and apply the division lemma to get

12 = 8 x 1 + 4

We consider the new divisor 8 and the new remainder 4,and apply the division lemma to get

8 = 4 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 4, the HCF of 632 and 404 is 4

Notice that 4 = HCF(8,4) = HCF(12,8) = HCF(20,12) = HCF(52,20) = HCF(176,52) = HCF(228,176) = HCF(404,228) = HCF(632,404) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 133 > 4, we apply the division lemma to 133 and 4, to get

133 = 4 x 33 + 1

Step 2: Since the reminder 4 ≠ 0, we apply division lemma to 1 and 4, to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 4 and 133 is 1

Notice that 1 = HCF(4,1) = HCF(133,4) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 983 > 1, we apply the division lemma to 983 and 1, to get

983 = 1 x 983 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 983 is 1

Notice that 1 = HCF(983,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 632, 404, 133, 983 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 632, 404, 133, 983?

Answer: HCF of 632, 404, 133, 983 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 632, 404, 133, 983 using Euclid's Algorithm?

Answer: For arbitrary numbers 632, 404, 133, 983 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.