Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 634, 262, 717, 457 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 634, 262, 717, 457 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 634, 262, 717, 457 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 634, 262, 717, 457 is 1.
HCF(634, 262, 717, 457) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 634, 262, 717, 457 is 1.
Step 1: Since 634 > 262, we apply the division lemma to 634 and 262, to get
634 = 262 x 2 + 110
Step 2: Since the reminder 262 ≠ 0, we apply division lemma to 110 and 262, to get
262 = 110 x 2 + 42
Step 3: We consider the new divisor 110 and the new remainder 42, and apply the division lemma to get
110 = 42 x 2 + 26
We consider the new divisor 42 and the new remainder 26,and apply the division lemma to get
42 = 26 x 1 + 16
We consider the new divisor 26 and the new remainder 16,and apply the division lemma to get
26 = 16 x 1 + 10
We consider the new divisor 16 and the new remainder 10,and apply the division lemma to get
16 = 10 x 1 + 6
We consider the new divisor 10 and the new remainder 6,and apply the division lemma to get
10 = 6 x 1 + 4
We consider the new divisor 6 and the new remainder 4,and apply the division lemma to get
6 = 4 x 1 + 2
We consider the new divisor 4 and the new remainder 2,and apply the division lemma to get
4 = 2 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 634 and 262 is 2
Notice that 2 = HCF(4,2) = HCF(6,4) = HCF(10,6) = HCF(16,10) = HCF(26,16) = HCF(42,26) = HCF(110,42) = HCF(262,110) = HCF(634,262) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 717 > 2, we apply the division lemma to 717 and 2, to get
717 = 2 x 358 + 1
Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 717 is 1
Notice that 1 = HCF(2,1) = HCF(717,2) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 457 > 1, we apply the division lemma to 457 and 1, to get
457 = 1 x 457 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 457 is 1
Notice that 1 = HCF(457,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 634, 262, 717, 457?
Answer: HCF of 634, 262, 717, 457 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 634, 262, 717, 457 using Euclid's Algorithm?
Answer: For arbitrary numbers 634, 262, 717, 457 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.