Highest Common Factor of 6373, 4232 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6373, 4232 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6373, 4232 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6373, 4232 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6373, 4232 is 1.

HCF(6373, 4232) = 1

HCF of 6373, 4232 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6373, 4232 is 1.

Highest Common Factor of 6373,4232 using Euclid's algorithm

Highest Common Factor of 6373,4232 is 1

Step 1: Since 6373 > 4232, we apply the division lemma to 6373 and 4232, to get

6373 = 4232 x 1 + 2141

Step 2: Since the reminder 4232 ≠ 0, we apply division lemma to 2141 and 4232, to get

4232 = 2141 x 1 + 2091

Step 3: We consider the new divisor 2141 and the new remainder 2091, and apply the division lemma to get

2141 = 2091 x 1 + 50

We consider the new divisor 2091 and the new remainder 50,and apply the division lemma to get

2091 = 50 x 41 + 41

We consider the new divisor 50 and the new remainder 41,and apply the division lemma to get

50 = 41 x 1 + 9

We consider the new divisor 41 and the new remainder 9,and apply the division lemma to get

41 = 9 x 4 + 5

We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get

9 = 5 x 1 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6373 and 4232 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(41,9) = HCF(50,41) = HCF(2091,50) = HCF(2141,2091) = HCF(4232,2141) = HCF(6373,4232) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6373, 4232 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6373, 4232?

Answer: HCF of 6373, 4232 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6373, 4232 using Euclid's Algorithm?

Answer: For arbitrary numbers 6373, 4232 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.