Highest Common Factor of 641, 3479 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 641, 3479 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 641, 3479 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 641, 3479 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 641, 3479 is 1.

HCF(641, 3479) = 1

HCF of 641, 3479 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 641, 3479 is 1.

Highest Common Factor of 641,3479 using Euclid's algorithm

Highest Common Factor of 641,3479 is 1

Step 1: Since 3479 > 641, we apply the division lemma to 3479 and 641, to get

3479 = 641 x 5 + 274

Step 2: Since the reminder 641 ≠ 0, we apply division lemma to 274 and 641, to get

641 = 274 x 2 + 93

Step 3: We consider the new divisor 274 and the new remainder 93, and apply the division lemma to get

274 = 93 x 2 + 88

We consider the new divisor 93 and the new remainder 88,and apply the division lemma to get

93 = 88 x 1 + 5

We consider the new divisor 88 and the new remainder 5,and apply the division lemma to get

88 = 5 x 17 + 3

We consider the new divisor 5 and the new remainder 3,and apply the division lemma to get

5 = 3 x 1 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 641 and 3479 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(5,3) = HCF(88,5) = HCF(93,88) = HCF(274,93) = HCF(641,274) = HCF(3479,641) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 641, 3479 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 641, 3479?

Answer: HCF of 641, 3479 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 641, 3479 using Euclid's Algorithm?

Answer: For arbitrary numbers 641, 3479 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.