Highest Common Factor of 641, 859, 533 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 641, 859, 533 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 641, 859, 533 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 641, 859, 533 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 641, 859, 533 is 1.

HCF(641, 859, 533) = 1

HCF of 641, 859, 533 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 641, 859, 533 is 1.

Highest Common Factor of 641,859,533 using Euclid's algorithm

Highest Common Factor of 641,859,533 is 1

Step 1: Since 859 > 641, we apply the division lemma to 859 and 641, to get

859 = 641 x 1 + 218

Step 2: Since the reminder 641 ≠ 0, we apply division lemma to 218 and 641, to get

641 = 218 x 2 + 205

Step 3: We consider the new divisor 218 and the new remainder 205, and apply the division lemma to get

218 = 205 x 1 + 13

We consider the new divisor 205 and the new remainder 13,and apply the division lemma to get

205 = 13 x 15 + 10

We consider the new divisor 13 and the new remainder 10,and apply the division lemma to get

13 = 10 x 1 + 3

We consider the new divisor 10 and the new remainder 3,and apply the division lemma to get

10 = 3 x 3 + 1

We consider the new divisor 3 and the new remainder 1,and apply the division lemma to get

3 = 1 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 641 and 859 is 1

Notice that 1 = HCF(3,1) = HCF(10,3) = HCF(13,10) = HCF(205,13) = HCF(218,205) = HCF(641,218) = HCF(859,641) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 533 > 1, we apply the division lemma to 533 and 1, to get

533 = 1 x 533 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 533 is 1

Notice that 1 = HCF(533,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 641, 859, 533 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 641, 859, 533?

Answer: HCF of 641, 859, 533 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 641, 859, 533 using Euclid's Algorithm?

Answer: For arbitrary numbers 641, 859, 533 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.