Highest Common Factor of 641, 907, 621 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 641, 907, 621 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 641, 907, 621 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 641, 907, 621 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 641, 907, 621 is 1.

HCF(641, 907, 621) = 1

HCF of 641, 907, 621 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 641, 907, 621 is 1.

Highest Common Factor of 641,907,621 using Euclid's algorithm

Highest Common Factor of 641,907,621 is 1

Step 1: Since 907 > 641, we apply the division lemma to 907 and 641, to get

907 = 641 x 1 + 266

Step 2: Since the reminder 641 ≠ 0, we apply division lemma to 266 and 641, to get

641 = 266 x 2 + 109

Step 3: We consider the new divisor 266 and the new remainder 109, and apply the division lemma to get

266 = 109 x 2 + 48

We consider the new divisor 109 and the new remainder 48,and apply the division lemma to get

109 = 48 x 2 + 13

We consider the new divisor 48 and the new remainder 13,and apply the division lemma to get

48 = 13 x 3 + 9

We consider the new divisor 13 and the new remainder 9,and apply the division lemma to get

13 = 9 x 1 + 4

We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get

9 = 4 x 2 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 641 and 907 is 1

Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(13,9) = HCF(48,13) = HCF(109,48) = HCF(266,109) = HCF(641,266) = HCF(907,641) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 621 > 1, we apply the division lemma to 621 and 1, to get

621 = 1 x 621 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 621 is 1

Notice that 1 = HCF(621,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 641, 907, 621 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 641, 907, 621?

Answer: HCF of 641, 907, 621 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 641, 907, 621 using Euclid's Algorithm?

Answer: For arbitrary numbers 641, 907, 621 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.