Highest Common Factor of 642, 601, 803, 81 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 642, 601, 803, 81 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 642, 601, 803, 81 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 642, 601, 803, 81 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 642, 601, 803, 81 is 1.

HCF(642, 601, 803, 81) = 1

HCF of 642, 601, 803, 81 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 642, 601, 803, 81 is 1.

Highest Common Factor of 642,601,803,81 using Euclid's algorithm

Highest Common Factor of 642,601,803,81 is 1

Step 1: Since 642 > 601, we apply the division lemma to 642 and 601, to get

642 = 601 x 1 + 41

Step 2: Since the reminder 601 ≠ 0, we apply division lemma to 41 and 601, to get

601 = 41 x 14 + 27

Step 3: We consider the new divisor 41 and the new remainder 27, and apply the division lemma to get

41 = 27 x 1 + 14

We consider the new divisor 27 and the new remainder 14,and apply the division lemma to get

27 = 14 x 1 + 13

We consider the new divisor 14 and the new remainder 13,and apply the division lemma to get

14 = 13 x 1 + 1

We consider the new divisor 13 and the new remainder 1,and apply the division lemma to get

13 = 1 x 13 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 642 and 601 is 1

Notice that 1 = HCF(13,1) = HCF(14,13) = HCF(27,14) = HCF(41,27) = HCF(601,41) = HCF(642,601) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 803 > 1, we apply the division lemma to 803 and 1, to get

803 = 1 x 803 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 803 is 1

Notice that 1 = HCF(803,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 81 > 1, we apply the division lemma to 81 and 1, to get

81 = 1 x 81 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 81 is 1

Notice that 1 = HCF(81,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 642, 601, 803, 81 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 642, 601, 803, 81?

Answer: HCF of 642, 601, 803, 81 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 642, 601, 803, 81 using Euclid's Algorithm?

Answer: For arbitrary numbers 642, 601, 803, 81 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.