Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 643, 503 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 643, 503 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 643, 503 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 643, 503 is 1.
HCF(643, 503) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 643, 503 is 1.
Step 1: Since 643 > 503, we apply the division lemma to 643 and 503, to get
643 = 503 x 1 + 140
Step 2: Since the reminder 503 ≠ 0, we apply division lemma to 140 and 503, to get
503 = 140 x 3 + 83
Step 3: We consider the new divisor 140 and the new remainder 83, and apply the division lemma to get
140 = 83 x 1 + 57
We consider the new divisor 83 and the new remainder 57,and apply the division lemma to get
83 = 57 x 1 + 26
We consider the new divisor 57 and the new remainder 26,and apply the division lemma to get
57 = 26 x 2 + 5
We consider the new divisor 26 and the new remainder 5,and apply the division lemma to get
26 = 5 x 5 + 1
We consider the new divisor 5 and the new remainder 1,and apply the division lemma to get
5 = 1 x 5 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 643 and 503 is 1
Notice that 1 = HCF(5,1) = HCF(26,5) = HCF(57,26) = HCF(83,57) = HCF(140,83) = HCF(503,140) = HCF(643,503) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 643, 503?
Answer: HCF of 643, 503 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 643, 503 using Euclid's Algorithm?
Answer: For arbitrary numbers 643, 503 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.