Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 645, 968, 34 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 645, 968, 34 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 645, 968, 34 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 645, 968, 34 is 1.
HCF(645, 968, 34) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 645, 968, 34 is 1.
Step 1: Since 968 > 645, we apply the division lemma to 968 and 645, to get
968 = 645 x 1 + 323
Step 2: Since the reminder 645 ≠ 0, we apply division lemma to 323 and 645, to get
645 = 323 x 1 + 322
Step 3: We consider the new divisor 323 and the new remainder 322, and apply the division lemma to get
323 = 322 x 1 + 1
We consider the new divisor 322 and the new remainder 1, and apply the division lemma to get
322 = 1 x 322 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 645 and 968 is 1
Notice that 1 = HCF(322,1) = HCF(323,322) = HCF(645,323) = HCF(968,645) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 34 > 1, we apply the division lemma to 34 and 1, to get
34 = 1 x 34 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 34 is 1
Notice that 1 = HCF(34,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 645, 968, 34?
Answer: HCF of 645, 968, 34 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 645, 968, 34 using Euclid's Algorithm?
Answer: For arbitrary numbers 645, 968, 34 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.