Highest Common Factor of 646, 571, 898 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 646, 571, 898 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 646, 571, 898 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 646, 571, 898 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 646, 571, 898 is 1.

HCF(646, 571, 898) = 1

HCF of 646, 571, 898 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 646, 571, 898 is 1.

Highest Common Factor of 646,571,898 using Euclid's algorithm

Highest Common Factor of 646,571,898 is 1

Step 1: Since 646 > 571, we apply the division lemma to 646 and 571, to get

646 = 571 x 1 + 75

Step 2: Since the reminder 571 ≠ 0, we apply division lemma to 75 and 571, to get

571 = 75 x 7 + 46

Step 3: We consider the new divisor 75 and the new remainder 46, and apply the division lemma to get

75 = 46 x 1 + 29

We consider the new divisor 46 and the new remainder 29,and apply the division lemma to get

46 = 29 x 1 + 17

We consider the new divisor 29 and the new remainder 17,and apply the division lemma to get

29 = 17 x 1 + 12

We consider the new divisor 17 and the new remainder 12,and apply the division lemma to get

17 = 12 x 1 + 5

We consider the new divisor 12 and the new remainder 5,and apply the division lemma to get

12 = 5 x 2 + 2

We consider the new divisor 5 and the new remainder 2,and apply the division lemma to get

5 = 2 x 2 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 646 and 571 is 1

Notice that 1 = HCF(2,1) = HCF(5,2) = HCF(12,5) = HCF(17,12) = HCF(29,17) = HCF(46,29) = HCF(75,46) = HCF(571,75) = HCF(646,571) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 898 > 1, we apply the division lemma to 898 and 1, to get

898 = 1 x 898 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 898 is 1

Notice that 1 = HCF(898,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 646, 571, 898 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 646, 571, 898?

Answer: HCF of 646, 571, 898 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 646, 571, 898 using Euclid's Algorithm?

Answer: For arbitrary numbers 646, 571, 898 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.