Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 646, 825, 41 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 646, 825, 41 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 646, 825, 41 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 646, 825, 41 is 1.
HCF(646, 825, 41) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 646, 825, 41 is 1.
Step 1: Since 825 > 646, we apply the division lemma to 825 and 646, to get
825 = 646 x 1 + 179
Step 2: Since the reminder 646 ≠ 0, we apply division lemma to 179 and 646, to get
646 = 179 x 3 + 109
Step 3: We consider the new divisor 179 and the new remainder 109, and apply the division lemma to get
179 = 109 x 1 + 70
We consider the new divisor 109 and the new remainder 70,and apply the division lemma to get
109 = 70 x 1 + 39
We consider the new divisor 70 and the new remainder 39,and apply the division lemma to get
70 = 39 x 1 + 31
We consider the new divisor 39 and the new remainder 31,and apply the division lemma to get
39 = 31 x 1 + 8
We consider the new divisor 31 and the new remainder 8,and apply the division lemma to get
31 = 8 x 3 + 7
We consider the new divisor 8 and the new remainder 7,and apply the division lemma to get
8 = 7 x 1 + 1
We consider the new divisor 7 and the new remainder 1,and apply the division lemma to get
7 = 1 x 7 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 646 and 825 is 1
Notice that 1 = HCF(7,1) = HCF(8,7) = HCF(31,8) = HCF(39,31) = HCF(70,39) = HCF(109,70) = HCF(179,109) = HCF(646,179) = HCF(825,646) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 41 > 1, we apply the division lemma to 41 and 1, to get
41 = 1 x 41 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 41 is 1
Notice that 1 = HCF(41,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 646, 825, 41?
Answer: HCF of 646, 825, 41 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 646, 825, 41 using Euclid's Algorithm?
Answer: For arbitrary numbers 646, 825, 41 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.