Highest Common Factor of 647, 700, 507, 408 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 647, 700, 507, 408 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 647, 700, 507, 408 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 647, 700, 507, 408 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 647, 700, 507, 408 is 1.

HCF(647, 700, 507, 408) = 1

HCF of 647, 700, 507, 408 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 647, 700, 507, 408 is 1.

Highest Common Factor of 647,700,507,408 using Euclid's algorithm

Highest Common Factor of 647,700,507,408 is 1

Step 1: Since 700 > 647, we apply the division lemma to 700 and 647, to get

700 = 647 x 1 + 53

Step 2: Since the reminder 647 ≠ 0, we apply division lemma to 53 and 647, to get

647 = 53 x 12 + 11

Step 3: We consider the new divisor 53 and the new remainder 11, and apply the division lemma to get

53 = 11 x 4 + 9

We consider the new divisor 11 and the new remainder 9,and apply the division lemma to get

11 = 9 x 1 + 2

We consider the new divisor 9 and the new remainder 2,and apply the division lemma to get

9 = 2 x 4 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 647 and 700 is 1

Notice that 1 = HCF(2,1) = HCF(9,2) = HCF(11,9) = HCF(53,11) = HCF(647,53) = HCF(700,647) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 507 > 1, we apply the division lemma to 507 and 1, to get

507 = 1 x 507 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 507 is 1

Notice that 1 = HCF(507,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 408 > 1, we apply the division lemma to 408 and 1, to get

408 = 1 x 408 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 408 is 1

Notice that 1 = HCF(408,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 647, 700, 507, 408 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 647, 700, 507, 408?

Answer: HCF of 647, 700, 507, 408 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 647, 700, 507, 408 using Euclid's Algorithm?

Answer: For arbitrary numbers 647, 700, 507, 408 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.