Highest Common Factor of 6507, 5199 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6507, 5199 i.e. 3 the largest integer that leaves a remainder zero for all numbers.

HCF of 6507, 5199 is 3 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6507, 5199 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6507, 5199 is 3.

HCF(6507, 5199) = 3

HCF of 6507, 5199 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6507, 5199 is 3.

Highest Common Factor of 6507,5199 using Euclid's algorithm

Highest Common Factor of 6507,5199 is 3

Step 1: Since 6507 > 5199, we apply the division lemma to 6507 and 5199, to get

6507 = 5199 x 1 + 1308

Step 2: Since the reminder 5199 ≠ 0, we apply division lemma to 1308 and 5199, to get

5199 = 1308 x 3 + 1275

Step 3: We consider the new divisor 1308 and the new remainder 1275, and apply the division lemma to get

1308 = 1275 x 1 + 33

We consider the new divisor 1275 and the new remainder 33,and apply the division lemma to get

1275 = 33 x 38 + 21

We consider the new divisor 33 and the new remainder 21,and apply the division lemma to get

33 = 21 x 1 + 12

We consider the new divisor 21 and the new remainder 12,and apply the division lemma to get

21 = 12 x 1 + 9

We consider the new divisor 12 and the new remainder 9,and apply the division lemma to get

12 = 9 x 1 + 3

We consider the new divisor 9 and the new remainder 3,and apply the division lemma to get

9 = 3 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 3, the HCF of 6507 and 5199 is 3

Notice that 3 = HCF(9,3) = HCF(12,9) = HCF(21,12) = HCF(33,21) = HCF(1275,33) = HCF(1308,1275) = HCF(5199,1308) = HCF(6507,5199) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6507, 5199 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6507, 5199?

Answer: HCF of 6507, 5199 is 3 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6507, 5199 using Euclid's Algorithm?

Answer: For arbitrary numbers 6507, 5199 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.