Highest Common Factor of 655, 6695 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 655, 6695 i.e. 5 the largest integer that leaves a remainder zero for all numbers.

HCF of 655, 6695 is 5 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 655, 6695 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 655, 6695 is 5.

HCF(655, 6695) = 5

HCF of 655, 6695 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 655, 6695 is 5.

Highest Common Factor of 655,6695 using Euclid's algorithm

Highest Common Factor of 655,6695 is 5

Step 1: Since 6695 > 655, we apply the division lemma to 6695 and 655, to get

6695 = 655 x 10 + 145

Step 2: Since the reminder 655 ≠ 0, we apply division lemma to 145 and 655, to get

655 = 145 x 4 + 75

Step 3: We consider the new divisor 145 and the new remainder 75, and apply the division lemma to get

145 = 75 x 1 + 70

We consider the new divisor 75 and the new remainder 70,and apply the division lemma to get

75 = 70 x 1 + 5

We consider the new divisor 70 and the new remainder 5,and apply the division lemma to get

70 = 5 x 14 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 5, the HCF of 655 and 6695 is 5

Notice that 5 = HCF(70,5) = HCF(75,70) = HCF(145,75) = HCF(655,145) = HCF(6695,655) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 655, 6695 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 655, 6695?

Answer: HCF of 655, 6695 is 5 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 655, 6695 using Euclid's Algorithm?

Answer: For arbitrary numbers 655, 6695 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.