Highest Common Factor of 6555, 4483 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6555, 4483 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6555, 4483 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6555, 4483 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6555, 4483 is 1.

HCF(6555, 4483) = 1

HCF of 6555, 4483 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6555, 4483 is 1.

Highest Common Factor of 6555,4483 using Euclid's algorithm

Highest Common Factor of 6555,4483 is 1

Step 1: Since 6555 > 4483, we apply the division lemma to 6555 and 4483, to get

6555 = 4483 x 1 + 2072

Step 2: Since the reminder 4483 ≠ 0, we apply division lemma to 2072 and 4483, to get

4483 = 2072 x 2 + 339

Step 3: We consider the new divisor 2072 and the new remainder 339, and apply the division lemma to get

2072 = 339 x 6 + 38

We consider the new divisor 339 and the new remainder 38,and apply the division lemma to get

339 = 38 x 8 + 35

We consider the new divisor 38 and the new remainder 35,and apply the division lemma to get

38 = 35 x 1 + 3

We consider the new divisor 35 and the new remainder 3,and apply the division lemma to get

35 = 3 x 11 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6555 and 4483 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(35,3) = HCF(38,35) = HCF(339,38) = HCF(2072,339) = HCF(4483,2072) = HCF(6555,4483) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6555, 4483 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6555, 4483?

Answer: HCF of 6555, 4483 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6555, 4483 using Euclid's Algorithm?

Answer: For arbitrary numbers 6555, 4483 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.