Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6570, 388 i.e. 2 the largest integer that leaves a remainder zero for all numbers.
HCF of 6570, 388 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 6570, 388 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 6570, 388 is 2.
HCF(6570, 388) = 2
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 6570, 388 is 2.
Step 1: Since 6570 > 388, we apply the division lemma to 6570 and 388, to get
6570 = 388 x 16 + 362
Step 2: Since the reminder 388 ≠ 0, we apply division lemma to 362 and 388, to get
388 = 362 x 1 + 26
Step 3: We consider the new divisor 362 and the new remainder 26, and apply the division lemma to get
362 = 26 x 13 + 24
We consider the new divisor 26 and the new remainder 24,and apply the division lemma to get
26 = 24 x 1 + 2
We consider the new divisor 24 and the new remainder 2,and apply the division lemma to get
24 = 2 x 12 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 6570 and 388 is 2
Notice that 2 = HCF(24,2) = HCF(26,24) = HCF(362,26) = HCF(388,362) = HCF(6570,388) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 6570, 388?
Answer: HCF of 6570, 388 is 2 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 6570, 388 using Euclid's Algorithm?
Answer: For arbitrary numbers 6570, 388 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.