Highest Common Factor of 6595, 9651 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6595, 9651 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6595, 9651 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6595, 9651 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6595, 9651 is 1.

HCF(6595, 9651) = 1

HCF of 6595, 9651 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6595, 9651 is 1.

Highest Common Factor of 6595,9651 using Euclid's algorithm

Highest Common Factor of 6595,9651 is 1

Step 1: Since 9651 > 6595, we apply the division lemma to 9651 and 6595, to get

9651 = 6595 x 1 + 3056

Step 2: Since the reminder 6595 ≠ 0, we apply division lemma to 3056 and 6595, to get

6595 = 3056 x 2 + 483

Step 3: We consider the new divisor 3056 and the new remainder 483, and apply the division lemma to get

3056 = 483 x 6 + 158

We consider the new divisor 483 and the new remainder 158,and apply the division lemma to get

483 = 158 x 3 + 9

We consider the new divisor 158 and the new remainder 9,and apply the division lemma to get

158 = 9 x 17 + 5

We consider the new divisor 9 and the new remainder 5,and apply the division lemma to get

9 = 5 x 1 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6595 and 9651 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(9,5) = HCF(158,9) = HCF(483,158) = HCF(3056,483) = HCF(6595,3056) = HCF(9651,6595) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6595, 9651 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6595, 9651?

Answer: HCF of 6595, 9651 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6595, 9651 using Euclid's Algorithm?

Answer: For arbitrary numbers 6595, 9651 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.