Highest Common Factor of 663, 139, 566, 86 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 663, 139, 566, 86 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 663, 139, 566, 86 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 663, 139, 566, 86 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 663, 139, 566, 86 is 1.

HCF(663, 139, 566, 86) = 1

HCF of 663, 139, 566, 86 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 663, 139, 566, 86 is 1.

Highest Common Factor of 663,139,566,86 using Euclid's algorithm

Highest Common Factor of 663,139,566,86 is 1

Step 1: Since 663 > 139, we apply the division lemma to 663 and 139, to get

663 = 139 x 4 + 107

Step 2: Since the reminder 139 ≠ 0, we apply division lemma to 107 and 139, to get

139 = 107 x 1 + 32

Step 3: We consider the new divisor 107 and the new remainder 32, and apply the division lemma to get

107 = 32 x 3 + 11

We consider the new divisor 32 and the new remainder 11,and apply the division lemma to get

32 = 11 x 2 + 10

We consider the new divisor 11 and the new remainder 10,and apply the division lemma to get

11 = 10 x 1 + 1

We consider the new divisor 10 and the new remainder 1,and apply the division lemma to get

10 = 1 x 10 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 663 and 139 is 1

Notice that 1 = HCF(10,1) = HCF(11,10) = HCF(32,11) = HCF(107,32) = HCF(139,107) = HCF(663,139) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 566 > 1, we apply the division lemma to 566 and 1, to get

566 = 1 x 566 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 566 is 1

Notice that 1 = HCF(566,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 86 > 1, we apply the division lemma to 86 and 1, to get

86 = 1 x 86 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 86 is 1

Notice that 1 = HCF(86,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 663, 139, 566, 86 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 663, 139, 566, 86?

Answer: HCF of 663, 139, 566, 86 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 663, 139, 566, 86 using Euclid's Algorithm?

Answer: For arbitrary numbers 663, 139, 566, 86 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.