Highest Common Factor of 663, 998, 559, 122 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 663, 998, 559, 122 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 663, 998, 559, 122 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 663, 998, 559, 122 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 663, 998, 559, 122 is 1.

HCF(663, 998, 559, 122) = 1

HCF of 663, 998, 559, 122 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 663, 998, 559, 122 is 1.

Highest Common Factor of 663,998,559,122 using Euclid's algorithm

Highest Common Factor of 663,998,559,122 is 1

Step 1: Since 998 > 663, we apply the division lemma to 998 and 663, to get

998 = 663 x 1 + 335

Step 2: Since the reminder 663 ≠ 0, we apply division lemma to 335 and 663, to get

663 = 335 x 1 + 328

Step 3: We consider the new divisor 335 and the new remainder 328, and apply the division lemma to get

335 = 328 x 1 + 7

We consider the new divisor 328 and the new remainder 7,and apply the division lemma to get

328 = 7 x 46 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 663 and 998 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(328,7) = HCF(335,328) = HCF(663,335) = HCF(998,663) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 559 > 1, we apply the division lemma to 559 and 1, to get

559 = 1 x 559 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 559 is 1

Notice that 1 = HCF(559,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 122 > 1, we apply the division lemma to 122 and 1, to get

122 = 1 x 122 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 122 is 1

Notice that 1 = HCF(122,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 663, 998, 559, 122 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 663, 998, 559, 122?

Answer: HCF of 663, 998, 559, 122 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 663, 998, 559, 122 using Euclid's Algorithm?

Answer: For arbitrary numbers 663, 998, 559, 122 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.