Highest Common Factor of 6633, 563 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6633, 563 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6633, 563 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6633, 563 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6633, 563 is 1.

HCF(6633, 563) = 1

HCF of 6633, 563 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6633, 563 is 1.

Highest Common Factor of 6633,563 using Euclid's algorithm

Highest Common Factor of 6633,563 is 1

Step 1: Since 6633 > 563, we apply the division lemma to 6633 and 563, to get

6633 = 563 x 11 + 440

Step 2: Since the reminder 563 ≠ 0, we apply division lemma to 440 and 563, to get

563 = 440 x 1 + 123

Step 3: We consider the new divisor 440 and the new remainder 123, and apply the division lemma to get

440 = 123 x 3 + 71

We consider the new divisor 123 and the new remainder 71,and apply the division lemma to get

123 = 71 x 1 + 52

We consider the new divisor 71 and the new remainder 52,and apply the division lemma to get

71 = 52 x 1 + 19

We consider the new divisor 52 and the new remainder 19,and apply the division lemma to get

52 = 19 x 2 + 14

We consider the new divisor 19 and the new remainder 14,and apply the division lemma to get

19 = 14 x 1 + 5

We consider the new divisor 14 and the new remainder 5,and apply the division lemma to get

14 = 5 x 2 + 4

We consider the new divisor 5 and the new remainder 4,and apply the division lemma to get

5 = 4 x 1 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6633 and 563 is 1

Notice that 1 = HCF(4,1) = HCF(5,4) = HCF(14,5) = HCF(19,14) = HCF(52,19) = HCF(71,52) = HCF(123,71) = HCF(440,123) = HCF(563,440) = HCF(6633,563) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6633, 563 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6633, 563?

Answer: HCF of 6633, 563 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6633, 563 using Euclid's Algorithm?

Answer: For arbitrary numbers 6633, 563 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.