Highest Common Factor of 665, 437, 267 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 665, 437, 267 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 665, 437, 267 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 665, 437, 267 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 665, 437, 267 is 1.

HCF(665, 437, 267) = 1

HCF of 665, 437, 267 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 665, 437, 267 is 1.

Highest Common Factor of 665,437,267 using Euclid's algorithm

Highest Common Factor of 665,437,267 is 1

Step 1: Since 665 > 437, we apply the division lemma to 665 and 437, to get

665 = 437 x 1 + 228

Step 2: Since the reminder 437 ≠ 0, we apply division lemma to 228 and 437, to get

437 = 228 x 1 + 209

Step 3: We consider the new divisor 228 and the new remainder 209, and apply the division lemma to get

228 = 209 x 1 + 19

We consider the new divisor 209 and the new remainder 19, and apply the division lemma to get

209 = 19 x 11 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 19, the HCF of 665 and 437 is 19

Notice that 19 = HCF(209,19) = HCF(228,209) = HCF(437,228) = HCF(665,437) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 267 > 19, we apply the division lemma to 267 and 19, to get

267 = 19 x 14 + 1

Step 2: Since the reminder 19 ≠ 0, we apply division lemma to 1 and 19, to get

19 = 1 x 19 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 19 and 267 is 1

Notice that 1 = HCF(19,1) = HCF(267,19) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 665, 437, 267 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 665, 437, 267?

Answer: HCF of 665, 437, 267 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 665, 437, 267 using Euclid's Algorithm?

Answer: For arbitrary numbers 665, 437, 267 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.