Highest Common Factor of 666, 496, 541, 733 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 666, 496, 541, 733 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 666, 496, 541, 733 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 666, 496, 541, 733 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 666, 496, 541, 733 is 1.

HCF(666, 496, 541, 733) = 1

HCF of 666, 496, 541, 733 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 666, 496, 541, 733 is 1.

Highest Common Factor of 666,496,541,733 using Euclid's algorithm

Highest Common Factor of 666,496,541,733 is 1

Step 1: Since 666 > 496, we apply the division lemma to 666 and 496, to get

666 = 496 x 1 + 170

Step 2: Since the reminder 496 ≠ 0, we apply division lemma to 170 and 496, to get

496 = 170 x 2 + 156

Step 3: We consider the new divisor 170 and the new remainder 156, and apply the division lemma to get

170 = 156 x 1 + 14

We consider the new divisor 156 and the new remainder 14,and apply the division lemma to get

156 = 14 x 11 + 2

We consider the new divisor 14 and the new remainder 2,and apply the division lemma to get

14 = 2 x 7 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 666 and 496 is 2

Notice that 2 = HCF(14,2) = HCF(156,14) = HCF(170,156) = HCF(496,170) = HCF(666,496) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 541 > 2, we apply the division lemma to 541 and 2, to get

541 = 2 x 270 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 541 is 1

Notice that 1 = HCF(2,1) = HCF(541,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 733 > 1, we apply the division lemma to 733 and 1, to get

733 = 1 x 733 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 733 is 1

Notice that 1 = HCF(733,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 666, 496, 541, 733 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 666, 496, 541, 733?

Answer: HCF of 666, 496, 541, 733 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 666, 496, 541, 733 using Euclid's Algorithm?

Answer: For arbitrary numbers 666, 496, 541, 733 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.