Highest Common Factor of 6678, 5161 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6678, 5161 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6678, 5161 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6678, 5161 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6678, 5161 is 1.

HCF(6678, 5161) = 1

HCF of 6678, 5161 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6678, 5161 is 1.

Highest Common Factor of 6678,5161 using Euclid's algorithm

Highest Common Factor of 6678,5161 is 1

Step 1: Since 6678 > 5161, we apply the division lemma to 6678 and 5161, to get

6678 = 5161 x 1 + 1517

Step 2: Since the reminder 5161 ≠ 0, we apply division lemma to 1517 and 5161, to get

5161 = 1517 x 3 + 610

Step 3: We consider the new divisor 1517 and the new remainder 610, and apply the division lemma to get

1517 = 610 x 2 + 297

We consider the new divisor 610 and the new remainder 297,and apply the division lemma to get

610 = 297 x 2 + 16

We consider the new divisor 297 and the new remainder 16,and apply the division lemma to get

297 = 16 x 18 + 9

We consider the new divisor 16 and the new remainder 9,and apply the division lemma to get

16 = 9 x 1 + 7

We consider the new divisor 9 and the new remainder 7,and apply the division lemma to get

9 = 7 x 1 + 2

We consider the new divisor 7 and the new remainder 2,and apply the division lemma to get

7 = 2 x 3 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6678 and 5161 is 1

Notice that 1 = HCF(2,1) = HCF(7,2) = HCF(9,7) = HCF(16,9) = HCF(297,16) = HCF(610,297) = HCF(1517,610) = HCF(5161,1517) = HCF(6678,5161) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6678, 5161 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6678, 5161?

Answer: HCF of 6678, 5161 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6678, 5161 using Euclid's Algorithm?

Answer: For arbitrary numbers 6678, 5161 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.