Highest Common Factor of 668, 481, 956 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 668, 481, 956 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 668, 481, 956 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 668, 481, 956 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 668, 481, 956 is 1.

HCF(668, 481, 956) = 1

HCF of 668, 481, 956 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 668, 481, 956 is 1.

Highest Common Factor of 668,481,956 using Euclid's algorithm

Highest Common Factor of 668,481,956 is 1

Step 1: Since 668 > 481, we apply the division lemma to 668 and 481, to get

668 = 481 x 1 + 187

Step 2: Since the reminder 481 ≠ 0, we apply division lemma to 187 and 481, to get

481 = 187 x 2 + 107

Step 3: We consider the new divisor 187 and the new remainder 107, and apply the division lemma to get

187 = 107 x 1 + 80

We consider the new divisor 107 and the new remainder 80,and apply the division lemma to get

107 = 80 x 1 + 27

We consider the new divisor 80 and the new remainder 27,and apply the division lemma to get

80 = 27 x 2 + 26

We consider the new divisor 27 and the new remainder 26,and apply the division lemma to get

27 = 26 x 1 + 1

We consider the new divisor 26 and the new remainder 1,and apply the division lemma to get

26 = 1 x 26 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 668 and 481 is 1

Notice that 1 = HCF(26,1) = HCF(27,26) = HCF(80,27) = HCF(107,80) = HCF(187,107) = HCF(481,187) = HCF(668,481) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 956 > 1, we apply the division lemma to 956 and 1, to get

956 = 1 x 956 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 956 is 1

Notice that 1 = HCF(956,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 668, 481, 956 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 668, 481, 956?

Answer: HCF of 668, 481, 956 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 668, 481, 956 using Euclid's Algorithm?

Answer: For arbitrary numbers 668, 481, 956 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.