Highest Common Factor of 6704, 3149 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6704, 3149 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 6704, 3149 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 6704, 3149 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 6704, 3149 is 1.

HCF(6704, 3149) = 1

HCF of 6704, 3149 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 6704, 3149 is 1.

Highest Common Factor of 6704,3149 using Euclid's algorithm

Highest Common Factor of 6704,3149 is 1

Step 1: Since 6704 > 3149, we apply the division lemma to 6704 and 3149, to get

6704 = 3149 x 2 + 406

Step 2: Since the reminder 3149 ≠ 0, we apply division lemma to 406 and 3149, to get

3149 = 406 x 7 + 307

Step 3: We consider the new divisor 406 and the new remainder 307, and apply the division lemma to get

406 = 307 x 1 + 99

We consider the new divisor 307 and the new remainder 99,and apply the division lemma to get

307 = 99 x 3 + 10

We consider the new divisor 99 and the new remainder 10,and apply the division lemma to get

99 = 10 x 9 + 9

We consider the new divisor 10 and the new remainder 9,and apply the division lemma to get

10 = 9 x 1 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6704 and 3149 is 1

Notice that 1 = HCF(9,1) = HCF(10,9) = HCF(99,10) = HCF(307,99) = HCF(406,307) = HCF(3149,406) = HCF(6704,3149) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 6704, 3149 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 6704, 3149?

Answer: HCF of 6704, 3149 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 6704, 3149 using Euclid's Algorithm?

Answer: For arbitrary numbers 6704, 3149 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.