Highest Common Factor of 671, 986, 999 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 671, 986, 999 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 671, 986, 999 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 671, 986, 999 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 671, 986, 999 is 1.

HCF(671, 986, 999) = 1

HCF of 671, 986, 999 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 671, 986, 999 is 1.

Highest Common Factor of 671,986,999 using Euclid's algorithm

Highest Common Factor of 671,986,999 is 1

Step 1: Since 986 > 671, we apply the division lemma to 986 and 671, to get

986 = 671 x 1 + 315

Step 2: Since the reminder 671 ≠ 0, we apply division lemma to 315 and 671, to get

671 = 315 x 2 + 41

Step 3: We consider the new divisor 315 and the new remainder 41, and apply the division lemma to get

315 = 41 x 7 + 28

We consider the new divisor 41 and the new remainder 28,and apply the division lemma to get

41 = 28 x 1 + 13

We consider the new divisor 28 and the new remainder 13,and apply the division lemma to get

28 = 13 x 2 + 2

We consider the new divisor 13 and the new remainder 2,and apply the division lemma to get

13 = 2 x 6 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 671 and 986 is 1

Notice that 1 = HCF(2,1) = HCF(13,2) = HCF(28,13) = HCF(41,28) = HCF(315,41) = HCF(671,315) = HCF(986,671) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 999 > 1, we apply the division lemma to 999 and 1, to get

999 = 1 x 999 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 999 is 1

Notice that 1 = HCF(999,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 671, 986, 999 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 671, 986, 999?

Answer: HCF of 671, 986, 999 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 671, 986, 999 using Euclid's Algorithm?

Answer: For arbitrary numbers 671, 986, 999 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.