Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 674, 365, 960, 896 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 674, 365, 960, 896 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 674, 365, 960, 896 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 674, 365, 960, 896 is 1.
HCF(674, 365, 960, 896) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 674, 365, 960, 896 is 1.
Step 1: Since 674 > 365, we apply the division lemma to 674 and 365, to get
674 = 365 x 1 + 309
Step 2: Since the reminder 365 ≠ 0, we apply division lemma to 309 and 365, to get
365 = 309 x 1 + 56
Step 3: We consider the new divisor 309 and the new remainder 56, and apply the division lemma to get
309 = 56 x 5 + 29
We consider the new divisor 56 and the new remainder 29,and apply the division lemma to get
56 = 29 x 1 + 27
We consider the new divisor 29 and the new remainder 27,and apply the division lemma to get
29 = 27 x 1 + 2
We consider the new divisor 27 and the new remainder 2,and apply the division lemma to get
27 = 2 x 13 + 1
We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get
2 = 1 x 2 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 674 and 365 is 1
Notice that 1 = HCF(2,1) = HCF(27,2) = HCF(29,27) = HCF(56,29) = HCF(309,56) = HCF(365,309) = HCF(674,365) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 960 > 1, we apply the division lemma to 960 and 1, to get
960 = 1 x 960 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 960 is 1
Notice that 1 = HCF(960,1) .
We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma
Step 1: Since 896 > 1, we apply the division lemma to 896 and 1, to get
896 = 1 x 896 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 896 is 1
Notice that 1 = HCF(896,1) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 674, 365, 960, 896?
Answer: HCF of 674, 365, 960, 896 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 674, 365, 960, 896 using Euclid's Algorithm?
Answer: For arbitrary numbers 674, 365, 960, 896 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.