Highest Common Factor of 674, 4250 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 674, 4250 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 674, 4250 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 674, 4250 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 674, 4250 is 2.

HCF(674, 4250) = 2

HCF of 674, 4250 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 674, 4250 is 2.

Highest Common Factor of 674,4250 using Euclid's algorithm

Highest Common Factor of 674,4250 is 2

Step 1: Since 4250 > 674, we apply the division lemma to 4250 and 674, to get

4250 = 674 x 6 + 206

Step 2: Since the reminder 674 ≠ 0, we apply division lemma to 206 and 674, to get

674 = 206 x 3 + 56

Step 3: We consider the new divisor 206 and the new remainder 56, and apply the division lemma to get

206 = 56 x 3 + 38

We consider the new divisor 56 and the new remainder 38,and apply the division lemma to get

56 = 38 x 1 + 18

We consider the new divisor 38 and the new remainder 18,and apply the division lemma to get

38 = 18 x 2 + 2

We consider the new divisor 18 and the new remainder 2,and apply the division lemma to get

18 = 2 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 674 and 4250 is 2

Notice that 2 = HCF(18,2) = HCF(38,18) = HCF(56,38) = HCF(206,56) = HCF(674,206) = HCF(4250,674) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 674, 4250 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 674, 4250?

Answer: HCF of 674, 4250 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 674, 4250 using Euclid's Algorithm?

Answer: For arbitrary numbers 674, 4250 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.