Highest Common Factor of 675, 983, 707 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 675, 983, 707 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 675, 983, 707 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 675, 983, 707 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 675, 983, 707 is 1.

HCF(675, 983, 707) = 1

HCF of 675, 983, 707 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 675, 983, 707 is 1.

Highest Common Factor of 675,983,707 using Euclid's algorithm

Highest Common Factor of 675,983,707 is 1

Step 1: Since 983 > 675, we apply the division lemma to 983 and 675, to get

983 = 675 x 1 + 308

Step 2: Since the reminder 675 ≠ 0, we apply division lemma to 308 and 675, to get

675 = 308 x 2 + 59

Step 3: We consider the new divisor 308 and the new remainder 59, and apply the division lemma to get

308 = 59 x 5 + 13

We consider the new divisor 59 and the new remainder 13,and apply the division lemma to get

59 = 13 x 4 + 7

We consider the new divisor 13 and the new remainder 7,and apply the division lemma to get

13 = 7 x 1 + 6

We consider the new divisor 7 and the new remainder 6,and apply the division lemma to get

7 = 6 x 1 + 1

We consider the new divisor 6 and the new remainder 1,and apply the division lemma to get

6 = 1 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 675 and 983 is 1

Notice that 1 = HCF(6,1) = HCF(7,6) = HCF(13,7) = HCF(59,13) = HCF(308,59) = HCF(675,308) = HCF(983,675) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 707 > 1, we apply the division lemma to 707 and 1, to get

707 = 1 x 707 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 707 is 1

Notice that 1 = HCF(707,1) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 675, 983, 707 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 675, 983, 707?

Answer: HCF of 675, 983, 707 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 675, 983, 707 using Euclid's Algorithm?

Answer: For arbitrary numbers 675, 983, 707 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.