Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 6755, 7516 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 6755, 7516 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 6755, 7516 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 6755, 7516 is 1.
HCF(6755, 7516) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 6755, 7516 is 1.
Step 1: Since 7516 > 6755, we apply the division lemma to 7516 and 6755, to get
7516 = 6755 x 1 + 761
Step 2: Since the reminder 6755 ≠ 0, we apply division lemma to 761 and 6755, to get
6755 = 761 x 8 + 667
Step 3: We consider the new divisor 761 and the new remainder 667, and apply the division lemma to get
761 = 667 x 1 + 94
We consider the new divisor 667 and the new remainder 94,and apply the division lemma to get
667 = 94 x 7 + 9
We consider the new divisor 94 and the new remainder 9,and apply the division lemma to get
94 = 9 x 10 + 4
We consider the new divisor 9 and the new remainder 4,and apply the division lemma to get
9 = 4 x 2 + 1
We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get
4 = 1 x 4 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 6755 and 7516 is 1
Notice that 1 = HCF(4,1) = HCF(9,4) = HCF(94,9) = HCF(667,94) = HCF(761,667) = HCF(6755,761) = HCF(7516,6755) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 6755, 7516?
Answer: HCF of 6755, 7516 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 6755, 7516 using Euclid's Algorithm?
Answer: For arbitrary numbers 6755, 7516 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.