Created By : Jatin Gogia
Reviewed By : Rajasekhar Valipishetty
Last Updated : Apr 06, 2023
HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 677, 9349 i.e. 1 the largest integer that leaves a remainder zero for all numbers.
HCF of 677, 9349 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.
Consider we have numbers 677, 9349 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b
Highest common factor (HCF) of 677, 9349 is 1.
HCF(677, 9349) = 1
Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.
Highest common factor (HCF) of 677, 9349 is 1.
Step 1: Since 9349 > 677, we apply the division lemma to 9349 and 677, to get
9349 = 677 x 13 + 548
Step 2: Since the reminder 677 ≠ 0, we apply division lemma to 548 and 677, to get
677 = 548 x 1 + 129
Step 3: We consider the new divisor 548 and the new remainder 129, and apply the division lemma to get
548 = 129 x 4 + 32
We consider the new divisor 129 and the new remainder 32,and apply the division lemma to get
129 = 32 x 4 + 1
We consider the new divisor 32 and the new remainder 1,and apply the division lemma to get
32 = 1 x 32 + 0
The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 677 and 9349 is 1
Notice that 1 = HCF(32,1) = HCF(129,32) = HCF(548,129) = HCF(677,548) = HCF(9349,677) .
Here are some samples of HCF using Euclid's Algorithm calculations.
1. What is the Euclid division algorithm?
Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.
2. what is the HCF of 677, 9349?
Answer: HCF of 677, 9349 is 1 the largest number that divides all the numbers leaving a remainder zero.
3. How to find HCF of 677, 9349 using Euclid's Algorithm?
Answer: For arbitrary numbers 677, 9349 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.