Highest Common Factor of 678, 208, 587, 394 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 678, 208, 587, 394 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 678, 208, 587, 394 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 678, 208, 587, 394 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 678, 208, 587, 394 is 1.

HCF(678, 208, 587, 394) = 1

HCF of 678, 208, 587, 394 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 678, 208, 587, 394 is 1.

Highest Common Factor of 678,208,587,394 using Euclid's algorithm

Highest Common Factor of 678,208,587,394 is 1

Step 1: Since 678 > 208, we apply the division lemma to 678 and 208, to get

678 = 208 x 3 + 54

Step 2: Since the reminder 208 ≠ 0, we apply division lemma to 54 and 208, to get

208 = 54 x 3 + 46

Step 3: We consider the new divisor 54 and the new remainder 46, and apply the division lemma to get

54 = 46 x 1 + 8

We consider the new divisor 46 and the new remainder 8,and apply the division lemma to get

46 = 8 x 5 + 6

We consider the new divisor 8 and the new remainder 6,and apply the division lemma to get

8 = 6 x 1 + 2

We consider the new divisor 6 and the new remainder 2,and apply the division lemma to get

6 = 2 x 3 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 678 and 208 is 2

Notice that 2 = HCF(6,2) = HCF(8,6) = HCF(46,8) = HCF(54,46) = HCF(208,54) = HCF(678,208) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 587 > 2, we apply the division lemma to 587 and 2, to get

587 = 2 x 293 + 1

Step 2: Since the reminder 2 ≠ 0, we apply division lemma to 1 and 2, to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 2 and 587 is 1

Notice that 1 = HCF(2,1) = HCF(587,2) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 394 > 1, we apply the division lemma to 394 and 1, to get

394 = 1 x 394 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 394 is 1

Notice that 1 = HCF(394,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 678, 208, 587, 394 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 678, 208, 587, 394?

Answer: HCF of 678, 208, 587, 394 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 678, 208, 587, 394 using Euclid's Algorithm?

Answer: For arbitrary numbers 678, 208, 587, 394 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.