Highest Common Factor of 678, 394, 44 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 678, 394, 44 i.e. 2 the largest integer that leaves a remainder zero for all numbers.

HCF of 678, 394, 44 is 2 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 678, 394, 44 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 678, 394, 44 is 2.

HCF(678, 394, 44) = 2

HCF of 678, 394, 44 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 678, 394, 44 is 2.

Highest Common Factor of 678,394,44 using Euclid's algorithm

Highest Common Factor of 678,394,44 is 2

Step 1: Since 678 > 394, we apply the division lemma to 678 and 394, to get

678 = 394 x 1 + 284

Step 2: Since the reminder 394 ≠ 0, we apply division lemma to 284 and 394, to get

394 = 284 x 1 + 110

Step 3: We consider the new divisor 284 and the new remainder 110, and apply the division lemma to get

284 = 110 x 2 + 64

We consider the new divisor 110 and the new remainder 64,and apply the division lemma to get

110 = 64 x 1 + 46

We consider the new divisor 64 and the new remainder 46,and apply the division lemma to get

64 = 46 x 1 + 18

We consider the new divisor 46 and the new remainder 18,and apply the division lemma to get

46 = 18 x 2 + 10

We consider the new divisor 18 and the new remainder 10,and apply the division lemma to get

18 = 10 x 1 + 8

We consider the new divisor 10 and the new remainder 8,and apply the division lemma to get

10 = 8 x 1 + 2

We consider the new divisor 8 and the new remainder 2,and apply the division lemma to get

8 = 2 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 678 and 394 is 2

Notice that 2 = HCF(8,2) = HCF(10,8) = HCF(18,10) = HCF(46,18) = HCF(64,46) = HCF(110,64) = HCF(284,110) = HCF(394,284) = HCF(678,394) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 44 > 2, we apply the division lemma to 44 and 2, to get

44 = 2 x 22 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 2, the HCF of 2 and 44 is 2

Notice that 2 = HCF(44,2) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 678, 394, 44 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 678, 394, 44?

Answer: HCF of 678, 394, 44 is 2 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 678, 394, 44 using Euclid's Algorithm?

Answer: For arbitrary numbers 678, 394, 44 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.