Highest Common Factor of 679, 3288 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 679, 3288 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 679, 3288 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 679, 3288 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 679, 3288 is 1.

HCF(679, 3288) = 1

HCF of 679, 3288 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 679, 3288 is 1.

Highest Common Factor of 679,3288 using Euclid's algorithm

Highest Common Factor of 679,3288 is 1

Step 1: Since 3288 > 679, we apply the division lemma to 3288 and 679, to get

3288 = 679 x 4 + 572

Step 2: Since the reminder 679 ≠ 0, we apply division lemma to 572 and 679, to get

679 = 572 x 1 + 107

Step 3: We consider the new divisor 572 and the new remainder 107, and apply the division lemma to get

572 = 107 x 5 + 37

We consider the new divisor 107 and the new remainder 37,and apply the division lemma to get

107 = 37 x 2 + 33

We consider the new divisor 37 and the new remainder 33,and apply the division lemma to get

37 = 33 x 1 + 4

We consider the new divisor 33 and the new remainder 4,and apply the division lemma to get

33 = 4 x 8 + 1

We consider the new divisor 4 and the new remainder 1,and apply the division lemma to get

4 = 1 x 4 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 679 and 3288 is 1

Notice that 1 = HCF(4,1) = HCF(33,4) = HCF(37,33) = HCF(107,37) = HCF(572,107) = HCF(679,572) = HCF(3288,679) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 679, 3288 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 679, 3288?

Answer: HCF of 679, 3288 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 679, 3288 using Euclid's Algorithm?

Answer: For arbitrary numbers 679, 3288 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.