Highest Common Factor of 679, 526, 510, 943 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 679, 526, 510, 943 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 679, 526, 510, 943 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 679, 526, 510, 943 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 679, 526, 510, 943 is 1.

HCF(679, 526, 510, 943) = 1

HCF of 679, 526, 510, 943 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 679, 526, 510, 943 is 1.

Highest Common Factor of 679,526,510,943 using Euclid's algorithm

Highest Common Factor of 679,526,510,943 is 1

Step 1: Since 679 > 526, we apply the division lemma to 679 and 526, to get

679 = 526 x 1 + 153

Step 2: Since the reminder 526 ≠ 0, we apply division lemma to 153 and 526, to get

526 = 153 x 3 + 67

Step 3: We consider the new divisor 153 and the new remainder 67, and apply the division lemma to get

153 = 67 x 2 + 19

We consider the new divisor 67 and the new remainder 19,and apply the division lemma to get

67 = 19 x 3 + 10

We consider the new divisor 19 and the new remainder 10,and apply the division lemma to get

19 = 10 x 1 + 9

We consider the new divisor 10 and the new remainder 9,and apply the division lemma to get

10 = 9 x 1 + 1

We consider the new divisor 9 and the new remainder 1,and apply the division lemma to get

9 = 1 x 9 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 679 and 526 is 1

Notice that 1 = HCF(9,1) = HCF(10,9) = HCF(19,10) = HCF(67,19) = HCF(153,67) = HCF(526,153) = HCF(679,526) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 510 > 1, we apply the division lemma to 510 and 1, to get

510 = 1 x 510 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 510 is 1

Notice that 1 = HCF(510,1) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 943 > 1, we apply the division lemma to 943 and 1, to get

943 = 1 x 943 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 1 and 943 is 1

Notice that 1 = HCF(943,1) .

HCF using Euclid's Algorithm Calculation Examples

Frequently Asked Questions on HCF of 679, 526, 510, 943 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 679, 526, 510, 943?

Answer: HCF of 679, 526, 510, 943 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 679, 526, 510, 943 using Euclid's Algorithm?

Answer: For arbitrary numbers 679, 526, 510, 943 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.