Highest Common Factor of 679, 582, 950 using Euclid's algorithm

Created By : Jatin Gogia

Reviewed By : Rajasekhar Valipishetty

Last Updated : Apr 06, 2023


HCF Calculator using the Euclid Division Algorithm helps you to find the Highest common factor (HCF) easily for 679, 582, 950 i.e. 1 the largest integer that leaves a remainder zero for all numbers.

HCF of 679, 582, 950 is 1 the largest number which exactly divides all the numbers i.e. where the remainder is zero. Let us get into the working of this example.

Consider we have numbers 679, 582, 950 and we need to find the HCF of these numbers. To do so, we need to choose the largest integer first and then as per Euclid's Division Lemma a = bq + r where 0 ≤ r ≤ b

Highest common factor (HCF) of 679, 582, 950 is 1.

HCF(679, 582, 950) = 1

HCF of 679, 582, 950 using Euclid's algorithm

Highest common factor or Highest common divisor (hcd) can be calculated by Euclid's algotithm.

HCF of:

Highest common factor (HCF) of 679, 582, 950 is 1.

Highest Common Factor of 679,582,950 using Euclid's algorithm

Highest Common Factor of 679,582,950 is 1

Step 1: Since 679 > 582, we apply the division lemma to 679 and 582, to get

679 = 582 x 1 + 97

Step 2: Since the reminder 582 ≠ 0, we apply division lemma to 97 and 582, to get

582 = 97 x 6 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 97, the HCF of 679 and 582 is 97

Notice that 97 = HCF(582,97) = HCF(679,582) .


We can take hcf of as 1st numbers and next number as another number to apply in Euclidean lemma

Step 1: Since 950 > 97, we apply the division lemma to 950 and 97, to get

950 = 97 x 9 + 77

Step 2: Since the reminder 97 ≠ 0, we apply division lemma to 77 and 97, to get

97 = 77 x 1 + 20

Step 3: We consider the new divisor 77 and the new remainder 20, and apply the division lemma to get

77 = 20 x 3 + 17

We consider the new divisor 20 and the new remainder 17,and apply the division lemma to get

20 = 17 x 1 + 3

We consider the new divisor 17 and the new remainder 3,and apply the division lemma to get

17 = 3 x 5 + 2

We consider the new divisor 3 and the new remainder 2,and apply the division lemma to get

3 = 2 x 1 + 1

We consider the new divisor 2 and the new remainder 1,and apply the division lemma to get

2 = 1 x 2 + 0

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 1, the HCF of 97 and 950 is 1

Notice that 1 = HCF(2,1) = HCF(3,2) = HCF(17,3) = HCF(20,17) = HCF(77,20) = HCF(97,77) = HCF(950,97) .

HCF using Euclid's Algorithm Calculation Examples

Here are some samples of HCF using Euclid's Algorithm calculations.

Frequently Asked Questions on HCF of 679, 582, 950 using Euclid's Algorithm

1. What is the Euclid division algorithm?

Answer: Euclid's Division Algorithm is a technique to compute the Highest Common Factor (HCF) of given positive integers.

2. what is the HCF of 679, 582, 950?

Answer: HCF of 679, 582, 950 is 1 the largest number that divides all the numbers leaving a remainder zero.

3. How to find HCF of 679, 582, 950 using Euclid's Algorithm?

Answer: For arbitrary numbers 679, 582, 950 apply Euclid’s Division Lemma in succession until you obtain a remainder zero. HCF is the remainder in the last but one step.